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It has long been assumed that if the gravitational constant G was larger in the past, the Earth’s radius had to be smaller. The
assertion holds provided the input from microphysics (in particular the equation of state) is independent of G. While this is
true for some theories of gravity with variable G itis not so in the scale covariant theory, where the pressure can be affected by
a variable G in a way that, for a constant mass of the Earth, a larger G in the past implies a larger Earth’s radius.

Comparison with recent palaeomagnetic data is presented.

MODERN observations' of increasing accuracy seem to confirm
that the phenomenon of gravity is correctly understood in terms
of Einstein’s geometrical interpretation and satisfactorily
described by the Einstein equations. There, therefore, seems to
be no cogent reason to modify Einstein’s theory as a description
of gravity, as there is no reason to modify atomic theory. Within
their limits, gravitational theory and atomic theory are complete
and thus far satisfactory theories.

In cosmology, however, where gravitational phenomena
involving large fractions of the age of the Universe are analysed
not with gravitational but with atomic clocks, the two dynamics
must be coupled. Let At (E for Einstein) be the time interval
marked by a clock governed by gravitational dynamics (two
orbiting planets, for example) and At the time marked by an
atomic clock. Because the gravitational constant G and the total
mass M may be thought of as the ‘springs’ of the gravitational
clock, much in the same way as e, # and m may be considered the
‘springs’ of the atomic clock, then Atz=f(G,M) and At=
gle, h,m).

To study the large times involved in cosmology a relationship
between Aty and At as a function of time or equivalently of the
age of the Universe is required. The lack of a unified theory of
electromagnetic and gravitational forces, which would give us
the answer, has been avoided so far by assuming that the ratio
B(t) = Atg/At at any time in the past was the same as today. This
is known as the strong equivalence principle, SEP. While the
adoption of the SEP has not yet led to flagrant disagreement
with observations, it remains an unproved assumption, because
its confirmation would require two measurements of 8 (t) at two
different times, the age of the Universe serving as a time scale. A
more popular way of expressing a possible non-constancy of B (f)
is by saying that G may vary with respect to atomic time®. In fact,
a non-constant B(t) is equivalent to one of the springs of the
gravitational clock, say G, varying with respect to the atomic
time.

Given the fundamental role of the SEP for the entire
cosmological edifice, it is natural to expect that the nature of the
function B(¢) be determined not by an a priori assumption, but
by either a unified theory, which we do not have, or by obser-
vations of which we now have enough, covering a large fraction
of the age of the Universe. .

Cosmological data to put limits on /B were used in ref. 3
while the past luminosity of the Sun was analysed in refs 4 and 5.
This article concentrates on the dependence of the radius of the
Earth on G = G(t).

The newtonian framework is shown to be unsuitable because
it leads to inconsistencies (see refs 3, 4, 6, 7). Then it is shown
that the Einstein framework leads, as expected, nowhere.
Finally, the scale covariant theory is used through which the
effects of a non-constant B(t) can be treated and quantified
consistently.

The Earth’s radius

While the first analysis® of the consequences of G = G () dealt
with the Sun’s luminosity (the result Lo~ G” has been shown* to
be Lo~ constant; see also ref. 5), more attention seems to have
been given to the Earth’s radius®'®. The general consensus
seems to be that if G was larger in the past, the Earth’s radius
had to be smaller (see, for example, refs 9-12).

To arrive at this qualitative conclusion, one uses (a) the
hydrostatic equilibrium equation, (b) an equation of state and (¢)
the assumption of a constant total rest mass, (po=mn,n=
N/V,M=mN)

1dp_ ;m0

oo dr -G pr (1a)
pxp} (1b)
M = constant (1c)
thus deriving
R oC MO -2/Gy=9G=1/Gy=4) _ (G-1/(Gv=4) (2)

which is the basic relation for all the qualitative conclusions that
a larger G implies a smaller R, and therefore an expanding
Earth.

While equations (1a), (1b) and (1¢) form a set of consistent
relations when G is constant, is the same true when G becomes a
variable? The different exponentials of G and M in equation (2)
are in sharp contrast with equation (1a) where G enters only in
the combination GM. The asymmetry is introduced using an
equation of state in the form (1), which contains M but not G,
the usual justification being that atomic relations are immune
from whatever happens to G, which is valid only if gravity and
atomic physics are kept separated. However, a variation of G
represents a change of one dynamics with respect to the other, a
process that can only be meaningful if we relate, not separate,
the two dynamics. While the assumption that the two dynamics
are disconnected may be logically consistent with the SEP, the
purpose here is to relax the SEP allowing the two dynamics to
depend on one another through the function 8 (¢) or equivalently
G (t). Furthermore, while we may reasonably expect an isolated
hydrogen atom to be independent of B, this need no longer be
true for a many-body quantity like an equation of state, which
involves ingredients like the integration over phase space, the
Liouville equation, as well as thermodynamic relations.

To show how equation (1) may lead to incompatibilities with
a G = G(t), let us consider the equation of state pV = NkT, and
use the adiabatic relation TV' = constant, where N = constant,
that is M = constant. We obtain p <p} (y = 1+1I), that is equa-
tion (1b) (equations (1b) and (Ic) are, therefore, related).
Furthermore, the basic ingredient in this derivation is the
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adiabatic relation TV = constant, which comes from integrat-
ing the first law of thermodynamics, which in turn is a statement
of conservation of energy.

However, if G =G(t), the potential energy F =
=G (t)mm,/r*=-VV(r, t) becomes time dependent and we do
not have energy conservation'?. An inconsistency has surfaced.

The argument may be formalized by moving from the
newtonian framework to the einsteinian one, not because
general relativistic effects are relevant to the Earth, but because
GR is the correct description of gravity. While the previous
argument indicates that equations (1b) and (1c) are related,
adopting the einsteinian framework will show that all the rela-
tions (1) are connected. In fact, the derivation of equation (1a) is
based on the momentum conservation law, while equations (1b)
and (1c) are related to the energy conservation law for the total
energy density p. These laws can be combined into the conser-
vation of the energy momentum tensor T, (ref. 14, equation
126.1), which in arbitrary coordinates reads

T, =0 3)
Let us now consider Einstein’s equations,
G, =R, -3g.R; G, =-87aGT,; (4a)

G*, =0 (4b)

Equation (4b) is the Bianchi identity, a geometrical relation
valid irrespectively of the content of the right-hand side of
equation (4a)'*. Clearly equations (1), or the global form,
equation (3), are compatible with equation (4b) only if G is
constant.

This argument indicates that taking G in equation (1a} vari-
able is inconsistent with the simultaneous use of equations (1b)
and (1c) in which G is absent not because it has no a priori right
to be there, but because it has already been assumed to be
constant.

The Einstein framework

Conventional general relativity is based on the existence of a
metric field which obeys the Einstein field equations (4b) with or
without the right-hand side (ref. 16 and P. Bergmann, personal
communication), GT,,,, a quantity that Einstein'? considered ““a
formal condensation of all those things whose comprehension in
the sense of a field theory is still problematic”. Equations (4a)
were constructed from left to right'*. Equation (4b) means that
the right-hand side of equations (4a) must have zero divergence.
While one may choose G to be constant, thus yielding T**,, =0
which embodies the ‘standard’ equations of motion and the
‘standard’ energy conservation equation, this choice is clearly
not dictated by the theory of gravity. For that reason Einstein
considered his theory ‘incomplete’, in the sense that it did not
prescribe how to construct the source term from within. Given
equation (4b), it would have been equally possible to choose

(GT*),, =0 (%

with G as a variable. Equation (5) indicates that T**, =0,
equation (3), is no longer true, because there is now a source
term proportional to G,. Because the energy conservation
equation has acquired new terms involving G, so will the resul-
ting equation of state. To summarize, as the energy-momentum
tensor T,, is a function of the pressure p and the total energy
density p, we have from equation (4) the two possibilities:

G constant plus Bianchi identity»>T*", =0-p =p(po), M =
constant

G variable plus Bianchi identity > (GT*"), =0->p = ploo G),
M # constant

independently of the specific form of T,,, (p, p). To illustrate the
modification to the p versus p rtelation, consider the following
form for T,,

T,.(p,p)=(p +p)u.u, —P8,. (6)

By introducing the variables p, =pG and p, = pG, we formally

reduce equation (5) to the standard form T%”,, = 0. Because G
has ‘disappeared’, we recover again, as in the standard case
Ps~ (po)% and M, = constant. Returning to the variables p and
Po, We obtain finally

pxXpyG™! (7a)
MG = constant (7b)
Alternatively, as T%', =0 implies p,dV +dU,=0, on

integrating, (pV = NkT =TU), NTGVT = constant. However,
the zero pressure limit of T%*, =0 implies nVG =NG =
constant, so that substituting T in pV = NkT, we recover equa-
tion (7a) (see also ref. 4).

As for the hydrostatic equilibrium relation, the introduction
of the new variables p, and p, has no effect on its structure,
because G depends only on time. Equation (1a) is therefore
consistent with a varying G.

Inserting equation (7a) into equation (1a), we derive,

R ~MO~2/Gy —4)G—1/(37 —NG U =D/By-4)

~(GM )~2/Bv=% — constant (8)

a result radically different from equation (2).

Alternatively, we can say that because only the starred quan-
tities are physically meaningful, equations (1) should read (p, =
p for ease of notation)

1 dp, m,
———=-— ocpl, =
p, dr ;20 Px%Pe M, = constant 9)
which clearly show that G does not appear.

Scale covariant framework

The previous analysis has indicated that while it is in principle
possible formally to make room for a variable G within the
Einstein framework, the results turn out to be identical to those
with a constant G. The message is that the quantity G has no
‘identity’ in such framework, thus confirming that there is no
useful way of talking about a variable G within the Einstein
theory.

To incorporate fully the possibility that atomic and gravita-
tional times may differ over large fractions of the age of the
Universe a formalism, the scale covariant theory (SCT) of
gravity, was devised. A gauge function B(t), epitomizing our
ignorance of how gravity and atomic forces couple, was intro-
duced through the equation

Atg=pB(t) At (10)

While the strong equivalence principle assumes 3 (¢) = constant,
a broad-based analysis of observational data ranging from
astrophysics to cosmology (up to z = 10°), gave no indication
that B(z) has to be constant®**”-'$, While this does not mean
that B(t) must be variable, it is a significant result once we
consider that it was firmly believed that even simple data like the
luminosity of the Sun would have clearly opposed the variability
of B(r). Furthermore, recent measurements of the period of the
Moon by both atomic and gravitational clocks do not seem to
yield the same result, the residual corresponding to

§= (275+0.64) 107" yr! (11)

Gravitational times are defined as those times with respect to
which the Einstein equations retain exactly their form as do all
the purely gravitational expressions ensuing therefrom.
However, with respect to atomic units, the gravitational equa-
tions take the form (ref. 6, equation (2.10))

G,, +f..(B)=—87GT,,(B) (12)

The final aim of the SCT is to construct a viable two-times
theory, within which the commonly assumed identity between
atomic and gravitational times may be broken, At # At For that
to occur, the lagrangian # describing gravity and matter must
not be scale invariant. While it is not a priori clear which of the
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terms in £ should break the symmetry, the choice is not large.
Brands and Dicke (BD) chose the gravitational part £, leaving
Z ., the matter part, unaltered. This implies that their T, does
not depend on B: the conservation law (3) holds unchanged, as
do relations (1). Relation (2) is therefore consistent with the BD
framework. However, the change in £, means that the Einstein
equations are modified by the addition of terms which coincide
with our function f,, (8) only if the BD parameter w is —3/2. The
potentially most serious source of troubles facing a theory that
alters the Einstein equations is that the expressions for the three
fundamental tests acquire extra contributions which may spoil
the ever increasing agreement with observations. As this seems
to be the case in the BD theory, the SCT was constructed with
the opposite point of view. The scale breaking terms were
relegated entirely to &,,, while the gravitational part of £ was
constructed in a scale invariant manner. The result is equation
(12), where the function f,, (8) assures that the left-hand side of
equation (12) is scale invariant, that is it has power zero under
the scale transformation ds>ds'=pg(x)ds, where for any
quantity A, we have A > A'=B""A, 7(A) being the ‘power’
of A.

This approach has been questioned’® on the grounds that the
‘presently accepted microscopic lagrangian’ can be shown to be
scale invariant (a more detailed discussion is given elsewhere).
One of the critical quantities entering the analysis of ref. 19 is
x(m), the power of a microscopic mass m. From the fact that
#/mc is a length, it follows that 7(!) = w(h)—m(m)=+1. The
claim'® that #(m)=—1 can only be made if = (h)= 0, which in
turn implies 7 (e) =0, because e?/fic is a pure number. Now
because the electric charge enters only in the lagrangian term
representing interactions, any assumption about w(e) is an
assumption about the scaling property of the interaction.
Because of the general relation BGM = constant (see equation
(14)), m(m)=—1 implies g =2. Now considering the elec-
tromagnetic tensor F**, if the contribution to T, from the free
electromagnetic field is taken to be scale invariant then the
power of F** is —3—g/2 which is —4. Because J* =enu* has
power —4, the interaction equation F**,, =J* is scale invariant.
As such, it may not hold in the SCT because the final aim is that
of allowing atomic clocks to scale differently from gravitational
clocks. Because the gravitational part £, has been constructed in
a scale invariant form (hence scale invariant theory of gravita-
tion) with the result that the period of a planet with respect to
atomic clocks scales like P ~ 8! (ref. 6, equation (4.19)), clearly
the dynamic equation governing an atom cannot be F**,, =J*
because being scale invariant, it would yield P (atom) ~ 8 ~1too,
thus leading to no difference between atomic and planetary
dynamics, that is to a constant G. If we accept “the presently
accepted form of £,”" (an equation like F**, =J*) then
clearly the only possibility for a varying G is to go back to £, and
to devise a modified BD approach. This line of reasoning, which
does not contemplate the possibility advocated by the pro-
ponents of the SCT, cannot be taken to imply nor to have proved
that either (1) G is constant or (2) that for it to vary, the only
avenue open is &,. Progress in modifying F**,, = J* using gauge
fields and neutral current concepts, has recently been made (P.J.
Adams and J. Anderson, personal communication). Far from
being mutually exclusive, the approach proposed in ref. 19 and
the point of view of the SCT are in our opinion but different
approaches towards the same goal.

Let us now prove that BGM is constant. It has been shown®
that the left-hand side of equation (12) has zero co-covariant
derivative (indicated by * instead of ;). We therefore have, using
equation (A.19) of ref. 6 and the fact that G, =0,

T, + (7 +6)p,T* —¢*T, =0 (13)

with ¢ =In B, ¢, =¢,. The quantity = is the power of T*.
Multiplying equation (13) by «,, and using for T,,, =pol,u,, we
obtain on integrating (p,V =M)

BGM = constant (14)
where V/V =u*,,, and 7 = mg=—4-g, g=m(G). We have

required that the right-hand side of equation (12) be scale
invariant, #(GT,,)=0. Equation (14) makes it clear that the
power of m must be chosen consistently with the dynamical
constraints of the theory, and not assumed a priori. In fact
because w(m)=1-g, a GB*=1 gauge yields w(m)=—1,
wl(ler)eas GB = 1, the so-called non-matter creation case, yields
w(m)=0.

The very fact that in equation (12) T, is taken to depend on 8
implies, even without further qualifications, that we cannot use,
without checking their validity, any of the standard relations
(1a), (1b) and (1c) because, strictly speaking, they are valid only
for constant 8. The B dependence of microscopic relations,
marking a sharp contrast with the BD theory, is the price one
must pay for constructing a theory with a built in two-times
scheme and which at the same time preserves the agreement
between observations and predictions for the fundamental tests,
whose expressions in atomic units can be derived by direct
scaling of the corresponding gravitational expressions. Because
at any given time the scale function 3(¢) can be normalized to
unity, a set of measurements at one time cannot reveal the
presence of B. In this sense, the SCT theory has preserved
agreement with the three tests”. The scaling of gravitational
expressions to obtain the corresponding atomic ones is all that is
required when dealing with purely gravitational phenomena,
like periods or distances of planets, which by assumption are
given by Einstein equations and are constant with respect to
gravitational clocks. On the other hand, non-gravitational
quantities must be derived consistently with equation (13), so
that the influence of the function 8 can be fully accounted for.
This is a major endeavour because it calls for a reconstruction of
microscopic physics, a process which, while accounting for the
fact that 8 can enter at any stage, must satisfy the following two
constraints: (1) the atomic clock ensuing from such theory must
not depend on B; (2) the many-body behaviour of the theory
must yield results consistent with the classical ones derived from
equation (13). A typical example of such ‘matching’ relation is
the continuity equation, p +p divj =0, which can be obtained
both from equation (3) and from the Schrodinger equation.
These requirements clearly indicate that the attempt at con-
structing such theory is far more complex and difficult than that
faced by Brans and Dicke. Descending from the Einstein equa-
tion to microphysics (thus running in the opposite direction to
the traditional one, which assumes the validity of the micro-
scopic scheme and makes connection with gravity by going from
a flat to curved space) has to my knowledge never been worked
out in detail. In spite of this, we have already derived® the
influence of B on several microscopic relations, and the cor-
responding observational implications such as the energy versus
frequency for a free photon; the adiabatic scaling law for a
perfect gas; the equilibrium radiation versus frequency and
temperature expression; and the luminosity versus distance
relation (see also ref. 5). No contradictions have yet appeared.

Having clarified this point, let us return to the original prob-
lem of evaluating R as R(¢). The full problem is very complex
because we do not yet possess a full description of atomic
interactions which determine the equation of state for an object
like the Earth. We can therefore present only a hopefully good
approximation to the exact solution. Returning to equation (13),
and using for T, equation (6), we first separate out the rest mass
contribution from the total energy density p, p = p,+u. The rest
mass part of equation (13) can be easily integrated. The result is
equation (14). The p —p,=u part satisfies the equation U=
uV)

dU +pdV +[(1—-g)U +3pV]d¢ =0 (15)

which is the first law of thermodynamics generalized to include
the B terms®. Let us now write

p =—C—’kT[1+B(T)%+C(T) (1_v‘7>2+‘ : ] (16)

where B(T) and C(T) are the so-called virial coefficients*®. We
first consider the perfect gas case, B = C =0. Using pV = NkT
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and U =NkT/T and remembering that N ~(BG)™!, we
integrate equation (15), with the results (y = 1+T)

G\ !
peeri(g3) (17a)
TB3F~711: (17b)

For a more general derivation, valid for non-adiabatic trans-
formations, see ref. 5.

Note that there is no choice of gauge, a G versus 8 relation,
that reduces equations (17a) and (14) to equations (1b) and
(1c), at least for y # 1. In fact, to recover equation (1b), we must
choose G ~ B2, which implies 8 <0, contrary to equation (11).
This choice would also imply M ~ 83, not M ~ constant. To see
the consequences of equation (17a), we use it in equation (1a),
which has already been shown® to be valid in the present
framework:

-2yt 3 -1/ [ C oTne 1
R ~MO~2/Cy=HG-1/Gy= (—) ~— (18)
B2 B
on using equation (14). The result is independent of y. We
therefore conclude that
R_ B
—=—-==—(2.75+£0.64)107"" -1 19
R B ( ) yr (19)
where we have used equation (11). The predicted value of R,
400 Myr ago, is therefore (Ry=1)

R =1.0110+0.002 (20)

which can be compared with the recent palaecomagnetic result*?

R =1.020+0.028 21)

At first sight, the close agreement can be taken as justification
for the approximations made to arrive at equation (18).
However, a closer scrutiny revels that the result must be taken
with great care. First, as stressed in ref. 12, an equation of state
of the form of equation (17a), is not valid at the surface of the
planet where p = 0 but p, # 0. The criticism is clearly indepen-
dent of G and B. More important, however, is that the result
R ~pB~" implies that the radius of the Earth in einstein units
Rp=PBR is constant. While possible, this result is not obvious
because atomic quantities like e and m, which enter the relation
pe as pe(pg) and therefore Rg, are not constant in einstein units.

Having discussed the limitations of equation (17a), we go
back to equation (16) and include the interaction term B(T)in
the form B(T)=—BT?~!. We simulate in this phenomenologi-
cal way an attractive potential. Although equation (17b) is valid
when B =0, it is used because we are performing an approxi-
mation to the first term. Equation (16) then becomes (p, =p for
ease of notation)

oo @ (20 e

where y = 1+T, 7 =v,—7v, 75 =2+(y —1)b. An equation of
state for the Earth of the type (22) (for G = 1and 8 = 1) hasbeen
proposed by Birch®' with y =7/3 and vy, = 5/3. While equation
(17a) allows an exact solution, equation (1 8), equation (22) does
not. For our purposes

N

where j is an average (but time dependent) density. We further
derive
R B 2+g)a
—=—r—; r-1l=——m—
R B D —3ya
where @ =3y —4, a=x(1-x)"", x = (B/A)pY (G/B*)7 . For
the values of y and v, given by Birch, we haver —1=(2+ ga/
(3+2a), which for g = 1 ranges from zero (& = 0)to3/2 (a=

24)

o). The first value corresponds to equation (18); a = co implies
x =1, that is p =p,, not acceptable. If p must vanish at p =p,
then x = (5/p,)*. In spite of the large excursion in «, the cor-
responding variation in r — 1 is only from 1 to 1.5. Takinga =1
(x =1/2, corresponding to p =8 gcm >, p,=2.84 gcm ™) and
g =1, we have r = 1.6, so that 400 Myr ago

R =1.018+£0.004 (25)

in better agreement with equation (21). Finally equation (24)
may alternatively be written, using equation (14),
R_ (GM)
R "GMm
to be compared with equation (2). As r is positive (at least for
g +2>0) the SCT predicts a result qualitatively different from
equation (2): for a constant mass M, a larger G implies a larger
radius, not a smaller one.

The method used to arrive at equation (22) is not meant to be
a microscopic derivation of the p versus (p, 8) relation for the
Earth, but only an heuristic approach to show how 8 may enter
the problem. Even without B, it is difficult to derive® an
equation of state for the Earth. Because all the p = p(p) relations
discussed in ref. 22 contain no 8 and because 8 = 1 corresponds
to einstein units, one might be tempted to think that the relations
in ref. 22 are actually valid in gravitational units and that a
simple scaling could then yield the corresponding atomic rela-
tions. This is, however, not the case. Such a procedure would
yield a relation where the difference of the power of p and that of
(G/B?) is unity, like the first term of equation (22). In turn this
yields r = 1: it can be seen that r — 1 is directly proportional to
the difference of these two exponents. Furthermore, r=1
implies Ry = constant producing difficulties already discussed.
With the present procedure, this does not happen. The powers
of p and that of (G/B?) of the second term of equation (22) do
not differ by one but by two. An extra term (G/B%)™" appears
which makes r # 1. This extra factor, which breaks the symmetry
that one would invariably get out of a simple scaling process,
cannot be arrived at from gravitational units where B =
constant.

R ~(GM), (26)

Lunar data

Having derived equation (24) but having no estimates for B/B
from within the theory, we can either use palacomagnetic data
for R/R and thus determine 8/B (and possibly G/G), or we
evaluate 8/B from other data and then compare the resulting
R/R with palacomagnetic data. The only other data available
are the rate of change of the Moon’s period measured in both
atomic and gravitational units: these are (P = 27/n is the period
of revolution of the Moon)

rig (gravitational time) 7 (atomic time)

(arc s cyr %) (arc s cyr %)
-26.0x£2.0 ref. 23 —21.4+2.6 ref. 26
-28.5+3.1 ref. 23 —-23.6+1.5 refs 26, 27
—-30.0+3.0 ref. 7 —-24.6+3.9 refs 26, 28 27
—-27.4%£3.0 ref. 24
-30.6+3.1 ref. 25

where, because of equation (10), n =pBng. A least-square fit
analysis yields (8/8 in 107! yr™!); note that 1 cyr=10?yr

All equations Ap=—-27.97+0.78; B8/B=2.75+0.64 (28a)
First fig deleted  np=-29.11£0.73;  §/B=3.41£0.54  (28b)
Second fig deleted fig =—27.87£0.91;  B/B=2.69£0.72  (28¢)

Because the value of 8/8 retaining all the eight equations turns
out to fall between the other two, we have adopted this value,
equation (11). Finally, independently of the way we determine
B/B (palacomagnetic or lunar data), the value of G/G is gauge
dependent and is to be determined using the relations G/G =

~gB/B, m(m)=1-g.
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Moment of inertia

Using equation (24), and M = constant we obtain I/1=-2rB/B,
or equivalently I/I = 2rG/G, with r >0. This result agrees with
equation (A.16) of ref. 29, because the G in equation (A.1) must
be written as G, = G(B*/G) ™' = G*™*, due to equation (17a).
If so, equation (A.16) becomes I/I =aG/G, with a=
(By—4)/10>0.

This result is, however, of limited use because it is in atomic
units and it represents only the cosmological and not the total
contribution to I/I, whereas the estimates reported in the
literature are total variations—due to all possible causes,
cosmological and otherwise—and they are all with respect to
gravitational units. To prove this last point, we must remember
that the basic ingredient (see refs. 30, 31) is the conservation of
the total angular momentum for the Earth-Moon system Jg +
L. =constant. If the Earth is considered a point mass, this
implies the conservation of the orbital angular momentum Lg, a
law valid only with respect to gravitational units®’. In atomic
units L scales like L ~B82/G (~G ~® for constant mass) (ref. 6,
equation 4.7). .

We now consider I./Ig from all sources and expressed in
gravitational units. While growth lines in fossils promised tobe a
valuable source of information®’, recent difficulties in inter-
pretation have indicated that quantitative results are not yet
possible’?, We shall therefore rely on ancient astronomical data
(see Chapter 10, ref. 31), and take equation (10.2.2b) from
ref. 31 and generalize it to include a non-constant Iz, We
obtain

Y e
3ng

I O

L
I O

+H (29)

where y = (1+b)L,/J, b accounting for the solar contribution.
H represents the contribution of the time variation of dynamical
elements describing the size, shape and orientation of the Earth—
Moon system. If J=IQcos¢, and L =MM,/(M.+M,)X
R2n(1—e?)'?cosi, then H = H (¢, ¢, di/dt) (see ref. 33).

Ancient astronomical observations can be used*' to construct
a relation of the form Xz + Y Qr=f, where X, and Y, are
numerical coefficients and f is a function of the observed less the
computed position of the recorded event. As stated by
Lambeck?! “the computed positions and locations’ are arrived
at “assuming purely gravitational motion”, further substantiat-
ing our claim that the ingredients are the standard newtonian
equations which hold only with respect to dynamical units with
G and My constant. Lambeck summarizes the results as
follows

hig=—28%2;  Qp=-1,100+100 (30)
This value for rig is not substantially different from the one
determined in equation (28). Using L,/J,=4.89 and b = 0.21,
we obtain from equation (29)

;—E= —(0.086+0.031) 10~ yr '+H 31)

E

To complete the computation we must now evaluate and then
subtract from equation (31) the purely cosmological contribu-
tion. This is done by remembering that I, ~ MR % ~B°R?, and
using equation (24)

(j—E) 28R 1B = (0.033£0.008) 10 ° yr!
IE cosm BR B (32)

The difference

55—(1—'5) = —(0.053+0.032) 10°yr ' +H  (33)
IE IE cosm

may now be attributed to geophysical phenomena such as the
formation of the Earth’s core®®. For the evaluation of H see
ref. 33.

Conclusions

The question whether a viable theory of gravitation exists that
permits equations (la), (1b) and (I¢) as they are, while G is
taken to vary, has been investigated with the following results.

Standard Einstein theory can be formally generalized to
include a non-constant G. While equation (1a) remains valid,
both equations (1b) and (1¢) change in such a way that the final
result is R = constant, demonstrating that G is actually a non-
entity within the strict framework of Einstein.

In the BD theory, as by construction the matter lagrangian is
not changed, equations (1) and (2) both hold. However, it is
believed that the BD theory faces difficulties, at least in its
present form.

Finally, while equation (1a) holds unchanged in the SCT
equations (1b) and (1c) cannot be simultaneously satisfied. The
most interesting result, however, which transcends the parti-
cular example equation (22), is that microphysics may be
affected by a variable G. This may seem unusual at first as
microphysics contains no G thus creating the impression that it
ought to be immune from whatever happens to G. However,
relations like the Boltzman equation, the radiative transfer
equation, and the Navier-Stokes equations are derivable from
and are consistent with the conservation law T#*, =0 for the
energy momentum tensor, a law which holds only if G is
constant, as equation (13) shows. The absence of G is actually a
consequence of having chosen it to be constant.

More general derivations of classical non-gravitational rela-
tions (such as, Liouville equation®, Boltzman distribution’,
radiative transfer equation® and classical thermodynamics>*) in
which B does explicitly appear, are possible, if constructed
consistently with the general conservation laws that follow from
the Einstein equation. For example, an equation of state of the
form (17a) with y = 4/3 holds** for radiation (p, is replaced by
the photon number density n,). Because 3p, =p, and n,T ~p,,
p, ~(B>G™")T*. It then follows that the Sun’s luminosity Lo
scales like Lo~ B~!/k, where k is the opacity. For constant k
and constant rest mass, Lo~ G, contrary to the early statements
that Lo~ G’ (for details, see refs 4, 5).

Our comparisons of the theoretical predictions with obser-
vations must be treated cautiously. The value of B/B derived
from lunar data and used to estimate equations (20) and (25) is
still subject to uncertainties due to the difficulties in estimating
the errors; there are also doubts concerning palacomagnetic
data, or more precisely the assumptions made to arrive at
equation (21) (ref. 10; see, however, ref. 34). Finally the evalu-
ation of the function H, equation (33), is still fraught with large
errors (see ref. 33).

We prefer, therefore, to focus the dependence of R on G. If
we write, in atomic units,

5=(5> +(§) (34)
R R cosm R other sources

the present work predicts a reversal (compared with the stan-
dard treatment, equation (2)), of the sign of the first term in
equation (34) when written in terms of G/G, equation (26).

This is in turn due to the new effect represented by the
presence of G in the p = p(p) relation: the G in the right-hand
side of equation (1a) is overcompensated by the G factor in
equation (17a), thus causing a larger G to correspond to a larger
radius. However, the evaluation of the second term in equation
(34) is outside the scope of this article, and we cannot conclude
from our work alone that R is actually decreasing.

I thank Drs G. Blake, D. J. Stevenson and J. Anderson for
constructive criticism, also Drs T. C. Van Flandern, S.-H. Hsieh,
P. J. Adams, 1. Goldman, J. R. Owen, K. M. Creer and J. D.
Mulholland for assistance during the preparation of this
manuscript.
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Structure of catabolite gene activator protein
at 2.9 A resolution
suggests binding to left-handed B-DNA

David B. McKay & Thomas A. Steitz

Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06511, USA

The 2.9 A resolution crystal structure of Escherichia coli catabolite gene activator protein (CAP) complexed with cyclic
AMP reveals two distinct structural domains separated by a cleft. The smaller carboxy-terminal domain is presumed to bind
DNA while the amino-terminal domain is seen to bind cyclic AMP. Model building studies suggest that CAP binds to
left-handed B-type DNA, contacting its major groove via two a-helices. It is possible that the CAP conversion of right- to
left-handed DNA in a closed supercoil, is what activates transcription by RNA polymerase.

REPRESSOR and activator proteins that regulate gene expres-
sion at the level of transcription recognize specific nucleotide
sequences in double-stranded DNA. Although it has been
suggested that specific recognition involves a- helices fitting into
the major groove of B-DNA'™ or anti-parallel 8- strands in the
minor groove®, no experimental evidence exists concerning the
actual mode of sequence-specific interaction between protein
and double-stranded DNA. Also, the molecular mechanism by
which gene activators promote the activity of RNA polymerase,
thereby switching on genes, remains unknown. We present here
the structure determination of a protein that binds in a
sequence-specific manner to double-stranded DNA and pro-
pose a mechanism by which the catabolite gene activator protein
is able to switch on the catabolite-sensitive genes.

The catabolite gene activator protein (CAP), also called the
cyclic AMP receptor protein, functions in Escherichia coli in
the regulation of several catabolite-sensitive gene operons®®.
Regulation by CAP is exerted at the transcriptional level with
cyclic AMP acting as an allosteric effector. In the presence of a
sufficient concentration of intracellular cyclic AMP, cyclic AMP
forms a complex with CAP which binds to specific DNA sites
near the promoters of several operons and alters the rate of their
transcription by RNA polymerase. In the lactose (lac)” and
arabinose® operons, the cyclic AMP-CAP complex is a positive
regulator-—-it potentiates transctiption. In the galactose operon,
the presence of two overlapping promoters for RNA poly-
merase makes the situation more complex; cyclic AMP-CAP is
required for initiation of transcription from one promoter, but
inhibits transcription from the other. Thus, in this case it
apparently acts as both a positive and negative regulator of
operon expression®.

The active form of CAP is a dimer of identical subunits of
molecular weight 22,500 and 201 amino acid residues®'.
Proteolytic cleavage studies are consistent with the CAP subunit

having two separate structural domains'?. Results from a variety
of techniques'*'” suggest that CAP undergoes a significant
conformational change on binding cyclic AMP.

To develop a structural basis for understanding (1) the cyclic
AMP-induced allosteric transition in CAP, (2) the site-specific
recognition of DNA by CAP, and (3) the mechanism of tran-
scription activation by CAP, we have initiated crystallographic
studies of CAP and its complexes with ligands. In this article we
report the structure of the cyclic AMP-CAP complex at 2.9 A
resolution.

Structure determination

CAP protein was purified and crystallized in the presence of
0.5 mM cyclic AMP as previously described'®. The crystals are
orthorhombic, space group P2,2,2,, a =46.5 A b=971 A,
¢ =105.4 A, with one dimeric CAP molecule per asymmetric
unit.

Intensities of crystallographic reflections were measured by
diffractometer, using the Wyckoff scan algorithm'®. Friedel
pairs of reflections were measured on native crystals and five
heavy-atom derivatives; for derivative data sets only ~75% of
the total reflections, consisting of those which were most intense
in the native data, were measured. Heavy-atom positions were
located and refined by conventional methods®° and the correct
enantiomorph of the heavy-atom positions was determined
using anomalous difference Fouriers*'. A summary of heavy-
atom derivative preparation and refinement statistics is presen-
ted in Table 1. Combined muitiple isomorphous replacement
and anomalous scattering phases were computed to 2.9
resolution and had an average figure of merit of 0.74.

Part of the electron density map is displayed in Fig. 1. Most of
the polypeptide backbone is well ordered and can be traced
unambiguously in both subunits; however, regions of local
disorder are encountered at the amino termini, the carboxy
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